L11 Tests with upper-sided alternative hypotheses

- 1. Tests with monotone increasing likelihood ratio in T(X).
 - (1) Definition of Monotone increasing likelihood ratio in T(X)A population system has parameter θ . With sample X the likelihood function is $L(\theta) = f(X; \theta)$ where $f(X; \theta)$ is the joint pdf or pmf of X. Suppose T(X) is a statistic. The system has monotone increasing likelihood ratio in T(X) if $\Lambda = \frac{L(\theta_2)}{L(\theta_1)}$ is an increasing function of T(X) for all $\theta_1 < \theta_2$.
 - (2) Invariant critical function for LRT For $H_0: \theta = \theta_1$ versus $H_a: \theta = \theta_2$ where $\theta_1 < \theta_2$ the LRT has critical function

$$\phi(X) = \begin{cases} 1 & \Lambda = \frac{L(\theta_2)}{L(\theta_1)} > k \\ r & \Lambda = \frac{L(\theta_2)}{L(\theta_1)} = k \\ 0 & \Lambda = \frac{L(\theta_2)}{L(\theta_1)} < k \end{cases} = \begin{cases} 1 & T(X) > c \\ r & T(X) = c \\ 0 & T(X) < c \end{cases}$$

This $\phi(X)$ is invariate with θ_1 and θ_2 as long as $\theta_1 < \theta_2$, i.e., for $H_0: \theta = \theta_3$ versus $H_a: \theta = \theta_4$ where $\theta_3 < \theta_4$ the LRT has the same general form of critical function since T(X) does not depend on any specific $\theta_1 < \theta_2$.

- (3) Property 1 of $E_{\theta}[\phi(X)]$ If $\psi(X)$ is also a critical function, i.e., $0 \le \psi(X) \le 1$, and $E_{\theta_0}[\psi(X)] \le E_{\theta_0}[\phi(X)]$, then $E_{\theta}[\psi(X)] \le E_{\theta}[\psi(X)]$ for all $\theta > \theta_0$.
 - **Proof.** Let $\theta_1 > \theta_0$. We show $E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$. LRT on $H_0: \theta = \theta_0$ versus $\theta = \theta_1$ where $\theta_1 > \theta_0$ has critical function in (2). Denote $E_{\theta_0}[\phi(X)]$ as α . Then $\phi(X)$ is α -level MP test. Thus if $E_{\theta_0}[\psi(X)] \leq \alpha = E_{\theta_0}[\phi(X)]$, then $E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$.
- (4) Property 2 of $E_{\theta}[\phi(X)]$ $E_{\theta}[\phi(X)]$ is a non-decreasing function of θ .
 - **Proof.** Let $\theta_1 < \theta_2$. We show $E_{\theta_1}[\phi(X)] \leq E_{\theta_2}[\phi(X)]$. LRT test in (2) has critical function $\phi(X)$. Denote $E_{\theta_1}[\phi(X)]$ as α . Then $\phi(X)$ gives α -level MP test. By HW, this test is unbiased. So $E_{\theta_1}[\phi(X)] = \alpha \leq E_{\theta_2}[\phi(X)]$.
- 2. α -level uniformly most powerfu test
 - (1) Definition For $H_0: \theta \in H_0$ versus $H_a: \theta \in H_a, \phi(X)$ is α -level uniformly most powerful (UMP) test if
 - (i) $E_{\theta}[\phi(X)] \leq \alpha$ for all $\theta \in H_0$, i.e., $\phi(X)$ is an α -level test.
 - (ii) For all α -level test $\psi(X)$, $E_{\theta}[\psi(X)] \leq E_{\theta}[\phi(X)]$ for all $\theta \in H_a$ (UMP)
 - (2) α -level UMP on $H_0: \theta = \theta_0$ versus $H_a: \theta > \theta_0$ For above hypotheses, $\phi(X)$ in (2) of 1 with $E_{\theta_0}[\phi(X)] = \alpha$ is α -level UMP test.

Proof. $E_{\theta_0}[\phi(X)] = \alpha$. So (i) in (1) of 2 is satisfied. Suppose $\psi(X)$ is also an α -level test. Then $E_{\theta_0}[\psi(X)] \leq \alpha = E_{\theta_0}[\phi(X)]$. By the Property 1 for $E_{\theta}[\phi(X)]$ in (3) of 1, $E_{\theta}[\psi(X)] \leq E_{\theta}[\phi(X)]$ for all $\theta > \theta_0$. Hence (ii) of 2 is met. Therefore $\phi(X)$ is an α -level UMP test.

3. Examples

Ex1: Population $N(\mu, \sigma^2)$ with known σ^2 has likelihood function

$$L(\mu) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(\frac{\sum X_i^2 - 2\mu \sum X_i + n\mu^2}{-2\sigma^2}\right).$$

With $\mu_1 < \mu_2$, $\Lambda = \frac{L(\mu_2)}{L(\mu_1)} = \frac{\exp\left(\frac{-2\mu_2 \sum X_i + n\mu_2^2}{-2\sigma^2}\right)}{\exp\left(\frac{-2\mu_1 \sum X_i + n\mu_1^2}{-2\sigma^2}\right)} = \exp\left[\frac{2(\mu_2 - \mu_1)\overline{X}_n + n(\mu_1^2 - \mu_2^2)}{2\sigma^2}\right]$ is an in

creasing function of \overline{X}_n . Thus the system has monotone increasing likelihood ratio in \overline{X}_n .

Ex2: In the setting of Ex1, note that \overline{X}_n is an increasing function of $Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}$. Thus the system also has monotone increasing likelihood function in $Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}$.

Ex3: With
$$\phi(X) = \begin{cases} 1 & \overline{X}_n > c_1 \\ 0 & \overline{X}_n \le c_1 \end{cases}$$
, solving
 $\alpha = E_{\mu_0}[\phi(X)] = P_{\mu_0}(\overline{X}_n > c_1) = P\left(N\left(0, \frac{\sigma^2}{n}\right) > c_1\right) = P\left(N(0, 1^2)\right) > \frac{c_1 - \mu_0}{\sigma/\sqrt{n}}\right),$
We have $\frac{c_1 - \mu_0}{\sigma} = Z_{\alpha} \Longrightarrow c_1 = \mu_0 + Z_{\alpha} \frac{\sigma}{\sigma}$. Therefore

 $e \frac{1}{\sigma/\sqrt{n}} = Z_{\alpha} =$

$$= Z_{\alpha} \Longrightarrow c_{1} = \mu_{0} + Z_{\alpha} \frac{\sigma}{\sqrt{n}}.$$
 Therefore

$$H_{0}: \mu = \mu_{0} \text{ versus } H_{a}: \mu > \mu_{0}$$
Critical function: $\phi(X) = \begin{cases} 1 & \overline{X}_{n} > \mu_{0} + Z_{\alpha} \frac{\sigma}{\sqrt{n}} \\ 0 & \overline{X}_{n} \le \mu_{0} + Z_{\alpha} \frac{\sigma}{\sqrt{n}} \end{cases}$

gives an α -level UMP test

Comment 1: The test schem im Ex3 can be expressed via test statistics and rejection rule:

$$\begin{array}{l} H_0: \ \mu = \mu_0 \text{ versus } H_a: \ \mu > \mu_0 \\ \text{Test statistic: } \overline{X}_n = \frac{\sum X_i}{n} \\ \text{Rejet } H_0 \text{ if } \overline{X}_n > \mu_0 + Z_\alpha \frac{\sigma}{\sqrt{n}} \end{array}$$

gives an α -level UMP test

Comment 2: One can also define $\phi(X)$ using $Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}$ or use Z as a traditional test statistic.

L12 Tests with lower-sided alternative hypotheses

- 1. Tests with monotone increasing likelihood ratio in T(X).
 - (1) Invariant critical function

Suppose a system has monotone increasing likelihood ratio in T(X), i.e., $\Lambda = \frac{L(\theta_2)}{L(\theta_1)}$ is an increasing function of T(X) for all $\theta_1 < \theta_2$. For $H_0: \theta = \theta_2$ versus $H_a: \theta = \theta_1$ where $\theta_1 < \theta_2$ the LRT has critical function

$$\phi(X) = \begin{cases} 1 & \frac{L(\theta_1)}{L(\theta_2)} > k \\ r & \frac{L(\theta_1)}{L(\theta_2)} = k \\ 0 & \frac{L(\theta_1)}{L(\theta_2)} < k \end{cases} = \begin{cases} 1 & \Lambda < \frac{1}{k} \\ r & \Lambda = \frac{1}{k} \\ 0 & \Lambda > \frac{1}{k} \end{cases} = \begin{cases} 1 & T(X) < \theta_1 \\ r & T(X) = \theta_1 \\ 0 & T(X) > \theta_2 \end{cases}$$

This $\phi(X)$ is invariate with θ_1 and θ_2 as long as $\theta_1 < \theta_2$, i.e., for $H_0: \theta = \theta_4$ versus $H_a: \theta = \theta_3$ where $\theta_3 < \theta_4$ the LRT has the same general form of critical function since T(X) does not depend on any specific $\theta_1 < \theta_2$.

(2) Property 1 of $E_{\theta}[\phi(X)]$

If $\psi(X)$ is also a critical function, i.e., $0 \le \psi(X) \le 1$, and $E_{\theta_0}[\psi(X)] \le E_{\theta_0}[\phi(X)]$, then $E_{\theta}[\psi(X)] \le E_{\theta}[\psi(X)]$ for all $\theta < \theta_0$.

- **Proof.** Let $\theta_1 < \theta_0$. We show $E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$. LRT on $H_0: \theta = \theta_0$ versus $\theta = \theta_1$ where $\theta_1 < \theta_0$ has critical function in (1). Denote $E_{\theta_0}[\phi(X)]$ as α . Then $\phi(X)$ is α -level MP test. Thus if $E_{\theta_0}[\psi(X)] \leq \alpha = E_{\theta_0}[\phi(X)]$, then $E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$.
- (3) Property 2 of $E_{\theta}[\phi(X)]$

 $E_{\theta}[\phi(X)]$ is a non-increasing function of θ .

Proof. Let $\theta_1 < \theta_2$. We show $E_{\theta_1}[\phi(X)] \ge E_{\theta_2}[\phi(X)]$. LRT test in (1) has critical function $\phi(X)$. Denote $E_{\theta_2}[\phi(X)]$ as α . Then $\phi(X)$ gives α -level MP test. By HW, this test is unbiased. So $E_{\theta_1}[\phi(X)] \ge \alpha = E_{\theta_2}[\phi(X)]$.

- 2. α -level uniformly most powerfu test
 - (1) α -level UMP on $H_0: \theta = \theta_0$ versus $H_a: \theta < \theta_0$ For above hypotheses, $\phi(X)$ in (1) of 1 with $E_{\theta_0}[\phi(X)] = \alpha$ is α -level UMP test. **Proof.** $E_{\theta_0}[\phi(X)] = \alpha$. So $\phi(X)$ gives an α -level test. For all α -level test $\psi(X), E_{\theta_0}[\psi(X)] \le \alpha = E_{\theta_0}[\phi(X)]$. By the Property 1, $E_{\theta}[\psi(X)] \le E_{\theta}[\phi(X)]$ for all $\theta < \theta_0$. Hence $\phi(X)$ is an α -level UMP test.
 - (2) Summary

Suppose likelihood ratio is monotone increasing function of T(X). Then

For $H_0: \theta = \theta_0$ versus $H_a: \theta < \theta_0$ $\phi(X) = \begin{cases} 1 \quad T(X) < c \\ r \quad T(X) = c \text{ with } E_{\theta_0}[\phi(X)] = \alpha \\ 0 \quad T(X) > c \end{cases}$ is an α -level UMP test

For
$$H_0: \theta = \theta_0$$
 versus $H_a: \theta > \theta_0$

$$\phi(X) = \begin{cases} 1 \quad T(X) > c \\ r \quad T(X) = c \quad \text{with } E_{\theta_0}[\phi(X)] = \alpha \\ 0 \quad T(X) < c \end{cases}$$
is an α -level UMP test

3. Examples

Ex1:
$$N(\mu, \sigma^2)$$
 has monotone likelihood ratio in $Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}$.
For $H_0: \mu = \mu_0$ versus $H_a: \mu < \mu_0, \ \phi(X) = \begin{cases} 1 & Z < c \\ 0 & Z \ge c \end{cases}$ where
 $\alpha = E_{\mu_0}[\phi(X)] = P_{\mu_0}(Z(X) < c) = P\left(N(0, 1^2) < c\right) \Longrightarrow c = -Z_{\alpha}$.
Thus $\phi(X) = \begin{cases} 1 & Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} < -Z_{\alpha} \\ 0 & Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} \ge -Z_{\alpha} \end{cases}$ gives α -level UMP test.
This test can be expressed using test statistic and rejection rule.

$$\begin{array}{l} H_0: \ \mu = \mu_0 \ \text{versus} \ H_a: \ \mu < \mu_0 \\ \text{Test statistic:} \ Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} \\ \text{Reject} \ H_0 \ \text{if} \ Z < -Z_\alpha \end{array}$$

gives an α -level UMP test

Comment 1: The test schem im Ex3 can be expressed via test statistics and rejection rule:

$$\begin{array}{l} H_0: \ \mu = \mu_0 \text{ versus } H_a: \ \mu > \mu_0 \\ \text{Test statistic: } \overline{X}_n = \frac{\sum X_i}{n} \\ \text{Rejet } H_0 \text{ if } \overline{X}_n > \mu_0 + Z_\alpha \frac{\sigma}{\sqrt{n}} \end{array}$$

gives an $\alpha\text{-level UMP test}$

Comment 2: One can also define $\phi(X)$ using $Z = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}$ or use Z as a traditional test statistic.